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On preconditioned SSOR methods for the linear
complementarity problem

Dan Zhang

Abstract— In this paper, we consider the preconditioned
iterative methods for solving the linear complementarity
problem associated with an M-matrix. Two preconditioned
SSOR methods for solving the linear complementarity problem
are proposed. The convergence of the proposed methods are
analyzed, and the comparison results are derived. The
comparison results show that the proposed preconditioned
SSOR methods accelerate the convergent rate of the SSOR
method. Numerical experiments verify the theory results.

Index Terms— Linear complementarity problems, SSOR
method, Preconditioner, Comparison theorem, M-matrix.

I. INTRODUCTION

n
For a given matrix AeR™ and a given vector feR ,
the linear complementarity problem, abbreviated as LCP,

consists of finding a vector X € R" such that
x>0, r=Ax—f>0, x'r=0. .0

Here, the notation "= " denotes the component wise defined
partial ordering between two vectors, and the superscript T
denotes the transpose of a given vector.

The LCP of the form (1.1) arising in many scientific
computing and engineering applications, for example,

contact problems with friction, free boundary value problems
of fluid mechanics, the solution of optimization and
behavioral models in biology and molecular biology, see [5,
6, 9]. The LCP (1.1) possesses a unique solution if and only

if AeR™ s a P-matrix, namely, a matrix whose all
principal submatrices have positive determinants, see
[5,6,17]. A positive diagonal M-matrix (see Section 2) is a
P-matrix, and the LCP (1.1) with an M-matrix has the unique
solution [4].

Numerical methods for LCP (1.1) have attracted much
attentions.There are three main classes of iterative methods
for the solution of the LCP (1.1): the projected methods [11,
12,16], the modulus algorithms [13] and the modulus-based
matrix splitting iterative methods [3,7,21,22], see [12] for a
survey of the solvers for LCP (1.1). We pay our attention in
the present work to the SSOR method [8], which is a special
projected method, for solving the LCP (1.1) with an
M-matrix. For accelerating the convergent rate of the SSOR
method [8], preconditioning techniques is often used [5, 20].
Preconditioning techniques for solving the large sparse linear

algebraic equations Ay=b have been investigated in depth, a
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number of preconditioners for the classical iterative methods
were proposed [10, 14, 19]. In [10], the preconditioner

1 -a, 0 A 0
0 1 -ay, A 0

P=1+S5,=lM M M O M |
0 O 0 A -a,,
0

0 0 A 1

is proposed for accelerating the convergence rate of classical
iterative method for the linear system with L-matrices. The

preconditioner R is generalized in [14] as
1 —aa, 0 A 0
0 1 -—aa, A 0
P=1+S(a)=|M M M 0O M,
0 o0 0 A —ap,a.,
0 o 0 A 1
where @ @A @1 are real constants, for accelerating the

convergent rate of

the Gauss-Seidel method for the linear system with an
M-matrix. To provide the

preconditioning effect on the last row and based on the

preconditioner R , Niki etal. [19] proposed the
preconditioner
1 -3, 0 A 0 |
0 1 -a, A 0
P=1+S=| M M M O M |
0 0 0 A -a.,
-2, 0 0 A 1 ]
Following the same idea and based on the preconditioner P, ,
we can propose the
preconditioner
1 -oa, 0 A 0
0 1 -8, A 0
P:(pij):|+8(a): A A A O A L2
0 0 0 A -g.a8,
¢a, 0 0 A 1
a,(i=12,A n)

with positive constants

In this paper, the preconditioner P in (1.2) is used to
accelerate the convergent rate of the SSOR method [8] for
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solving the LCP of the form (1.1). Two precondi-tioned
SSOR methods are proposed, and its convergence are studied.
The remainder of the paper are organized as follows.

In Section 2, some preliminaries are given. The projected
method for solving LCP is recalled, and two preconditioned
SSOR methods are proposed. In Section 3, the convergence
of the preconditioned SSOR methods are studied. The
comparison results about the convergent rates between the
proposed preconditioned SSOR methods with the SSOR
method [8] for LCP (1.1) with an M-matrix are given in
Section 4. Numerical examples are given to demonstrate our
theoretical results in Section 5. Finally, a brief conclusion is
drawn in Section 6.

Il. PRELIMINARIES
Let us firstly summarize some notations. In reference to R"
and R™ | the relation = denotes partial ordering. In
addition, for *Y<R" we write X>Y (or X=Y) if *>Y% (or

XY ) hold for I=LA.N
A=(a,) eR™

A nonsingular matrix
is termed an M-matrix if %<0 for 1# 1 and
A" >0 It’s comparison matrix (A)=4, is defined by & =] ,
& =l (i #j)for 1 1=1A N A jssaid to be an H-matrix if
1

a;

<A> is an M-matrix. For simplicity, we may assume that % =
for i=1A ,n_

Secondly, we present some definitions and results about the
splitting of matrix.

Definition 2.1 [20] Let AeR™
A=M-N s called a splitting of A if M is nonsingular.
Then A=M =N s called

1. convergent if /(M "N)<1.

2 . regularif M 720 N>0.

3. weak regular if M 720 M*N2

4 . an M-splitting of A if M is an M-matrix and N =0,
Lemma 2.1 [5] Let A=M =N s an M-splitting of A . Then
PMMTN) <1 if ang only if A isan M-matrix.

Lemma 2.2 [2] A is monotone if and only if A is nonsingular
with A" =0,

Lemma 2.3 [15] Let A be an M-matrix, and X be a solution
f

The representation

of LCP (1.1). If i > 0, then Xi > 0 and therefore

R34 H=0 Voreover, if TS0 then X=0 s the
solution of LCP (1.1).

Lemma 2.4 [5] Let A be a Z-matrix. Then the following
statements are equivalent:

(1) A is anonsingular M-matrix.

(2) There exists a positive vector V>0 such that Av>0,

(3) Any weak regular splitting is convergent.
[18] that A=M-N,
A =M, =N, are weak regular splittings of the monotone

Lemma 25 Suppose and

] a1
matrices ~rand #2, respectively, such that M: " <M " |f there

exists a positive vector X such that®=AX=<AX then for the

M NG <M

monotonic norm associated with X | n

particular, if M, N, has a positive Perron vector, then
p(MzilNz) < P(M171N1),

Thirdly, we give the project methods, especially the SSOR
method [8], for the LCP (1.1).

Definition 2.2 For X € Rn, vector X, is defined such that

)y =mad0x} j=LA N Then for any*Y<R", The
following facts hold:
(X+y)+ SX++y+'

X =Y. S(X_y)+

‘X+‘ = X+ +(_X)+ : and

X< Y implies that X- < V-,
Following the Definition 2.2, the LCP (1.1) is equivalent to
[1]

z=(z-0Q(Az+ 1)), (2.1
where & is a positive constant and the matrix Qs positive
diagonal. Let 0<W<2 gng A=D-L-U  where D, L
and U are diagonal, strictly lower and upper triangular parts
of A, respectively. Then (E, F) is called the SSOR splitting of
A 1g1if (E:F) s a splitting of A, and
E =1/(w(w-2))(D-wL)D*(D-wU)
and
F =1/(w(2—w))(A—w)D+wL)D*((1l—-w)D +wU)
From (2.1) and the SSOR splitting of A | two SSOR methods

for solving the LCP(1.1) are defined as follows (see [8]):
Method 2.1 (SSOR method I);

0
Choose an initial vector Z° € R" , & positive parameter w
and set k=0 ;
Compute
2" = (2 - D' [-wUZ"" + (W2 - w) A+wU ) zK —w(2-w) f]),
If 2" =2, then stop, otherwise set K =K+1 and return to
Step (2).
Method 2.2 (SSOR method 1)
Choose an initial vector 2° €R" | a positive parameter w and
set k=0;
Compute
2" = (2 - D [~wLz"* + (W2 - W) A+ wL)Z* —w(2-w) f]),

K+l _ ok _
If 27 =2" then stop, otherwise set k=K+1 and return

to Step (2)

Let

B,=1-wD?L C, =[I-D [w2-w)A+wL] 22)
and

B, =1-wDU| C, =|l -D[W(2-w)A+wU] 23)

Then the convergence of the SSOR method | and SSOR
method Il are presented in
the following lemma [8, Theorem 2.1]

Lemma 2.6 [8] Let A=) €R™ 1o an H-matrix with
positive diagonal elements. If 0 <W<2  then for any initial

vector Z° € R" | the iterative sequences z* generated by the

SSOR methods | and 11 converge to the unique solution Z" of
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-1
the LCP (1.1) and it holds that P(Bi C)<1 gng
p(B,'C,)<1

Finally, SSOR

methods..Let A= PA f =Pf and denote A=D-L-U

where D U and L are diagonal, strictly lower and upper
triangular matrices, respectively. Then the preconditioned
SSOR methods for the LCP (1.1) are defined as follows:
Method 2.3 (Preconditioned SSOR method I):

. 0 n
Choose an initial vector Z° € R

we present the preconditioned

, @ positive parameter w

and set K=0;

Compute

24 = (2 - D [-wUZ“* + (W2~ wW) A+ W)z —~w(2-w) F]),
If 2" = 2" then stop, otherwise set k := k + 1 and return to
step (2)

Method 2.4 (Preconditioned SSOR method I1):

I 0 o
Choose an initial vector Z' € R" , & positive parameter w

and set k = 0;
Compute
7t = (2 =D [-wLZ*"! + (W2 —W) A+ wL)Z* —w(2—w) f])
TR Zk, then stop, otherwise set k=K+1 and return
to Step (2)
As the preconditioner P is defines as in (1.2), the elements
i of A satisfy
~ {a alal I+lal+lj I # ji J :112/\ n,

! y—0,a,,8y 1= J, j=12A N, (2.4)
and the elements fi off satisfy

f'"’_{f a|a||+lfi+1’i¢n

P f a . f,i=n

an n1 (25)

I11. CONVERGENCE ANALYSIS

In this section, we will consider the convergence of the
preconditioned SSOR methods I and 1l for solving the LCP
(2.1). From Lemma 2.3, if the problem LCP (1.1) has a

nonzero solution, there is at least one index ! such that fi >

0.Without loss of generality, let us assume that f. > 0and i
> 0.

Theorem 3.1 Let

>0 then LCP(L1)
complementarity problem

x>0, T=Ax—f >0, X'T=0. (3.
Proof. Suppose that X is the solution to LCP (1.1). Because
>0 and fi1>0 from Lemma 2.3 we have that % >0
Z';:la“xj —f,=0 o Xi+1>0,z:=1ai+lvjxj - f‘“:O.

if1=n , then we have

n
j= &;X; — Z (anJ

A=PA=[3] f=Pf=f & >0 4

linear

i+l

is equivalent to the

nlalj)xj _(fn a, nlf )

+

78
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_Zjl nXj m(z X~ f.)

n

28X~ f; (3.2)
If 1#N then we get
R ZJ L@y —ady i )X - (f—aidy 0, )
=20 e fi—aa QL an X - fu)
2,1 Sl (39)

From (3.2) and (3.3), it can be seen that X is the solution of
the LCP (3.1). Conversely, suppose that X is the solution of

the LCP (3.1). X >0
Z, 1a11 i f_
f,=0

This together with (3.2) and (3.3) give ijlaiixi T
DX~ fa=0

Thus for | =N we have

EDISLMIESS

=Z:j:1(aij +aaga)X; — (f +aay,f,)

n n
=23 ~fita (X, 8% = )

n
j=1

It follows from Lemma 2.3 that
nd X|+l>0 Zjl |+lJ j fi+1:0.

and

'll

auxl f;

And for I # N we can deduce that
" f _Z (alj +a| i+l |+1,j)Xj

IJJ

2221 %] f~

| ||+1(Z 1a|+1] i |+1)

auxJ f;

Hence, X is the solution of the LCP (1.1).
In what follows, we assume that the conditions

Hy 0<@ <1 g i=1A 0

(H2) 0= %P gor
Theorem 3.2 If A is an M-matrix, (H1)-(H2) hold, then
A=PA s an M-matrix

i+, j i:l,A,n_

Proof. If A isan M-matrix, then 3; <0 for 7] . Now from

(2.4) and the assumptions, we have

aii =q; —

8118, >0 i£ni=] :
&j:a — 08,8, <0 iz,
B = 8 = %8sy, >0 = j=n,
a; =a; —a,8,,8,;<0  j=niz i

From Lemma 2.4 there exists a positive vector y>0 such
that &Y >0 Note thatP >0, thus AY=PAY >0 and from

Lemma 2.4 A is an M-matrix.

From Theorems 3.1 and Theorems 3.2, we can establish the
following convergence theorem for the preconditioned SSOR
methods I and Il for solving the LCP (1.1)

Theorem 3.3 Let A=(3)eR be a nonsingular M-matrix.

If P given in (1.2) satisfies the conditions of Theorem 3.2,

Www.ijeas.org
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then for O<W<2 | the iterative sequences of the
preconditioned SSOR methods | and Il converge to the unique

solution X" of the LCP (1.1), where for the given vector f, its

components f:>0 and fin >0
Proof Since A is a nonsmgular M-matrix, by Theorem 3.2

A is also an M-matrix, then A is an H-matrix with positive
diagonals. Hence, according to Lemma 2.6, the iterative
sequences of the preconditioned SSOR methods | and Il

converge to the unique solution X" of the LCP (3.1), or

equivalently, the unique solution X" of the LCP (1.1) by
Theorem 3.1.

IV. COMPARISON RESULTS

In this section, we will consider comparison theorems, which
show that the PSSOR methods can increase the convergence
of corresponding SSOR methods for the LCPs of M-matrices.
Let us consider the problem (1.1) with the splitting
A=D-L-U 4.1)
where D L and Y are diagonal, strictly lower and strictly
uppertrlangular parts of A , respectively. We assume that
A=pa=(ly =Pt 42
where P satisfies Theorem 3.3 and
-~ |y a,a,HlaHlJl;tn j:12An

i anj —a,a,,8,;i=n,j=12A n,
We split A in(4.2) as
A=D-L-U
D,L

(4.3)

where vand U are diagonal, strictly lower and strictly

upper triangular parts of A | respectively. Apparently, it
follows that 2 = (i) with
d a alal |+1a|+1| I # n'
IJ ann n n,la'l,n,I = n’
L= (Iii) with
a alall+lal+lj’|;tn’i> j,
i Ay =08,,8y 1=,

G = (uii) with uij = a - |+la|+lj i< J

respectively.

In what follows, we give some useful auxiliary results that are
important for us

to provide comparison theorems.

A=(a,) R™

Lemma4.1 Let be an M-matrix. Assume that

A is written as the splitting (4.1) and D,LU.D.L gng Uaare
given by (4.1)-(4.3). Then
D |L/<D|L| pu|<B7]

Proof. Since A is an M-matrix, naturally, an H-matrix with
positive diagonals

A~ ,48,,; >0,1#n,
a,—a, n,la:I.,n >O'i =n, (4_4)

D|L=(I;) DYE[=(})

Let us denote Then we have

2ali-)
I_: aii aij, J1
0,other,

_ a. —aa a (‘a, J‘+alall+lal+lj) i>j,i¢n,

| _ l i ||+1 i+1,i

+a anlalvj),i:n,

(\an ,

>0

ann n, 1a1 n

On the one hand, from (4.4), Pii
M-matrix, we have

and the fact that A isan

1

—<

T T A I and 3| = (g i I+lj)

1 <

P < ) .

a, a,, anan,la'l,n and anJ - (anj +anan,la1,j)
<l i,jeN

Therefore, we obtain that 1 ~ . . In other words,
D|L|<D L]
Similarly, one can achieve that Similarly, one can achieve that
DU|< D]

Let

B=1-wh ] C =[I-D [w2-w)A+wL] 45)

B,=1-wb{0| C,=|I-D ' [w(2-w)A+wU] @6
7A= (a;)eR™

Lemma 4.2 Let

A and T are given by (4.2) and B.C, and B.C ,are
defined by (4.5) and (4.6), respectively. If 0<W<2 then for
X, €R"

be an M-matrix. Suppose that

any initial vector ,the iterative sequences

k
X" generated by the PSSOR methods I and 11 converge to the

unique solution X’ of the LCP (1.1) and it follows that
p(B'C) <1 gng P(B,C,) <1

Proof. By (4.2), A is an H-matrix with positive diagonals.

Hence, by Theorem 3.3, for any initial vector % <R the

iterative sequences X" of the PSSOR methods | and 1l
converge to the unique solution of the LCP(1.1), and from

Lemma 2.6 and the fact that A is an H-matrix with positive
~ i~ ~ 1=

diagonal entries, it follows that B C:<1 and B, C, <1,

Theorem 4.1 Assume that A is a nonsingular M-matrix and

A and A have the splitting (4.1) and (4.3), respectively. Let

B.,C, and , Bl,Cl be given as in (2.2) and (4.5), respectlvely

Then for the matrices B 'C, for SSOR | and Bl C for

PSSORI with respect to the LCPs, we have

p(B'C) < p(B'C) <1

Proof. By Lemma 2.6 and the fact that A is an M-matrix, for

X, €R"

el B R k
any initial vector the iterative sequence X

Www.ijeas.org
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generated by SSOR | converges to the unique solution X" of
the LCP (1.1) and

p(B,'C)<1 @

Analogously, by Lemma 4.2 and the fact that A is an
H-matrix with positive diagonals, for any initial vector

n k
Yo €R" the iterative sequence Y generated by PSSORI
converges to the unique solution X’ of the LCP (1.1) and
p(B,'C)<1 (4.8)

5 -1~ -1
Let us now consider the result p(B, C)<p(B C) In
terms of Lemma 4.1, we

DL <DL

have that .which is

| —wD[L|<1-wD|L|

equivalent to

that is, B,<B Notice that B: and B:are M-matrices, this
implies that 0< B2<B™  Let us denote @=Bi~Ciand
Q. =B, ~C; Observe that B, and Brare M-matrices apd C,
and G are nonnegative, it holds that B -Ci and B,-C, are
M-splittings of @ and Q respectively. It means from
(4.7),(4.8) and Lemma 2.2 that Q and  are M-matrices.
Therefore, Q>0 and Qzflzowhich show by Lemma 2.2
that @ and 2 are monotone. From the fact that an
M-splitting is an ~regular splitting, it can be derived
that B. ~Crand Bi—Ciare regular splittings of the monotone
matrices @ and @, respectively.

Note that A is an irreducible matrix, taking into account that
B,"C, = (I -wD|L) | - D' [w(2—-w)A+wL]

this implies that the matrix B, 'C, is a nonnegative
N SSOR1 PSSOR1 SSOR11 PSSOR11
100 0.1150 0.0564 0.1150 0.0772
400 0.1193 0.0587 0.1193 0.0812
9200 0.1202 0.0591 0.1202 0.0820
1600 0.1205 0.0593 0.1205 0.0824

irreducible matrix. Thus, by means of Perron-Frobenius

theorem (see Theorem 2.7 of [4]), B, 'C, has a positive Perron

vector. By Lemma 25, as a result, we have
oS -1~ -1

P(B, C)<p(B,C) This completes the proof.

Similarly, we can obtain the following corollary.

Corollary 4.1

Assume that A is a nonsingular M-matrix and A and A

have the splitting (4.1) and (4.2), respectively. Let B,.C,

B,.C

and 2 be given as in (2.3) and (4.6), respectively. Then

-1 o -1~
for the matrices B, C, for SSORII and B, C, for PSSORI|I

80
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with respect to the LCP (1.1), it holds
p(B,"C,) < p(B,"C,) <1

that

V. NUMERICAL EXAMPLES

In this section, an example is given for verifying the
theoretical result.

Example 5.1 Consider the LCP with the system matrix
AeR™ and the

Vector feR ,
_ _ -1 ]
S -1 -1
1
S -1 0O "
A= S O -l|eR™ f= eR"
M
o -1 ot
S n
- - L (D" ]
where S =tridiag(-18-1)eR™ ;4 | €R™ js e

=2
identity matrix and N~ =M It is easy to check that A is an
M-matrix. So, the LCP has a unique solution. Taking into

account that 12 >0 fa>0A o Ky €{2,46A}

The results are summarized in Table 1,2. By Table 1,2, we
compare spectral radii

of two PSSOR methods with those of corresponding two
SSOR methods for w = 0.2 and w = 0.9 when

n=100,400900 and 160Orespectively. It is observed
from Table 1, 2 that two preconditioned SSOR methods
improve considerably convergence rate of corresponding two
SSOR methods for the LCP(A,f), which confirm our
theoretical results.

-1 S -1~
Table 1,2 list p(BC) and p(B C) with different &
and W for Example 5.1.

;. PBTC) p(B7'C)

Table
(a,A L a, ) =(0.LA 0.1, %)T

and with

W=0.2 for Example 5.1

VI. CONCLUDING REMARKS

In this paper, for the LCPs with an M-matrix A and the

f , we first present a preconditioner P by using the

vector
number of positive sign of the components in f ,
Table 2
-1 5 -1~
p(B°C) and p(B°C) with
2
a,A a, ) =(0.1A,015)
( 1 -1 ) ( 3) W:0.9 for

Example 5.1

Www.ijeas.org
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N SSOR1 PSSOR1 SSOR11 PSSOR11
100 0.7193 0.6856  0.7193  0.6871
400 0.7218 0.6877 0.7218  0.6893
900 0.7233 0.6881 0.7223  0.6898
1600 | 0.7225 0.6883  0.7225 0.6899

and prove that the original LCP (1.1) is equivalent to the LCP

(3.1). Then, on the basis of the preconditioner P two
preconditioned SSOR methods for linear complementarity
problem are proposed and the convergence analysis is
provided.Also we achieve comparison theorems on the
preconditioned SSOR methods for the linear complementarity
problem, which show that the PSSOR methods improve
considerably the convergence rate of the original SSOR
methods for solving the LCP (1.1). Numerical examples
tested show the prominent efficiency of the proposed
methods. How to extend this technique to other methods for
solving the LCPs is the content of future research.
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